Voxelized Shadow Volumes
Abstract
Efficient shadowing algorithms have been sought for decades, but most shadow research focuses on quickly identifying shadows on surfaces. This paper introduces a novel algorithm to efficiently sample light visibility at points inside a volume. These voxelized shadow volumes (VSVs) extend shadow maps to allow efficient, simultaneous queries of visibility along view rays, or can alternately be seen as a discretized shadow volume. We voxelize the scene intoa binary, epipolar-space grid where we apply a fast parallel scan to identify shadowed voxels. Using a view-dependent grid, our GPU implementation looks up 128 visibility samples along any eye ray with a single texture fetch. We demonstrate our algorithm in the context of interactive shadows in homogeneous, single-scattering participating media.
BibTeX
@inproceedings {10.1145:2018323.2018329,
booktitle = {Eurographics/ ACM SIGGRAPH Symposium on High Performance Graphics},
editor = {Carsten Dachsbacher and William Mark and Jacopo Pantaleoni},
title = {{Voxelized Shadow Volumes}},
author = {Wyman, Chris},
year = {2011},
publisher = {ACM},
ISSN = {2079-8687},
ISBN = {978-1-4503-0896-0},
DOI = {10.1145/2018323.2018329}
}
booktitle = {Eurographics/ ACM SIGGRAPH Symposium on High Performance Graphics},
editor = {Carsten Dachsbacher and William Mark and Jacopo Pantaleoni},
title = {{Voxelized Shadow Volumes}},
author = {Wyman, Chris},
year = {2011},
publisher = {ACM},
ISSN = {2079-8687},
ISBN = {978-1-4503-0896-0},
DOI = {10.1145/2018323.2018329}
}