Show simple item record

dc.contributor.authorWoodring, Jonathanen_US
dc.contributor.authorShen, Han-Weien_US
dc.contributor.editorH.-C. Hege, I. Hotz, and T. Munzneren_US
dc.date.accessioned2014-02-21T19:50:39Z
dc.date.available2014-02-21T19:50:39Z
dc.date.issued2009en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/j.1467-8659.2009.01472.xen_US
dc.description.abstractWhen creating transfer functions for time-varying data, it is not clear what range of values to use for classification, as data value ranges and distributions change over time. In order to generate time-varying transfer functions, we search the data for classes that have similar behavior over time, assuming that data points that behave similarly belong to the same feature. We utilize a method we call temporal clustering and sequencing to find dynamic features in value space and create a corresponding transfer function. First, clustering finds groups of data points that have the same value space activity over time. Then, sequencing derives a progression of clusters over time, creating chains that follow value distribution changes. Finally, the cluster sequences are used to create transfer functions, as sequences describe the value range distributions over time in a data set.en_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.titleSemi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencingen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume28en_US
dc.description.number3en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record