Show simple item record

dc.contributor.authorLi, Gengyanen_US
dc.contributor.authorSarkar, Kripasindhuen_US
dc.contributor.authorMeka, Abhimitraen_US
dc.contributor.authorBuehler, Marcelen_US
dc.contributor.authorMueller, Franziskaen_US
dc.contributor.authorGotardo, Pauloen_US
dc.contributor.authorHilliges, Otmaren_US
dc.contributor.authorBeeler, Thaboen_US
dc.contributor.editorBermano, Amit H.en_US
dc.contributor.editorKalogerakis, Evangelosen_US
dc.date.accessioned2024-04-16T14:42:13Z
dc.date.available2024-04-16T14:42:13Z
dc.date.issued2024
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.15041
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf15041
dc.description.abstractEye gaze and expressions are crucial non-verbal signals in face-to-face communication. Visual effects and telepresence demand significant improvements in personalized tracking, animation, and synthesis of the eye region to achieve true immersion. Morphable face models, in combination with coordinate-based neural volumetric representations, show promise in solving the difficult problem of reconstructing intricate geometry (eyelashes) and synthesizing photorealistic appearance variations (wrinkles and specularities) of eye performances. We propose a novel hybrid representation - ShellNeRF - that builds a discretized volume around a 3DMM face mesh using concentric surfaces to model the deformable 'periocular' region. We define a canonical space using the UV layout of the shells that constrains the space of dense correspondence search. Combined with an explicit eyeball mesh for modeling corneal light-transport, our model allows for animatable photorealistic 3D synthesis of the whole eye region. Using multi-view video input, we demonstrate significant improvements over state-of-the-art in expression re-enactment and transfer for high-resolution close-up views of the eye region.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Motion capture; Physical simulation; Image-based rendering; Mixed / augmented reality; Volumetric models; Parametric curve and surface models; Appearance and texture representations; Shape representations; 3D imaging; Reconstruction
dc.subjectComputing methodologies
dc.subjectMotion capture
dc.subjectPhysical simulation
dc.subjectImage
dc.subjectbased rendering
dc.subjectMixed / augmented reality
dc.subjectVolumetric models
dc.subjectParametric curve and surface models
dc.subjectAppearance and texture representations
dc.subjectShape representations
dc.subject3D imaging
dc.subjectReconstruction
dc.titleShellNeRF: Learning a Controllable High-resolution Model of the Eye and Periocular Regionen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersFace Modeling and Reconstruction
dc.description.volume43
dc.description.number2
dc.identifier.doi10.1111/cgf.15041
dc.identifier.pages15 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License