Real-Time Underwater Spectral Rendering
View/ Open
Date
2024Author
Monzon, Nestor
Gutierrez, Diego
Akkaynak, Derya
Muñoz, Adolfo
Metadata
Show full item recordAbstract
The light field in an underwater environment is characterized by complex multiple scattering interactions and wavelengthdependent attenuation, requiring significant computational resources for the simulation of underwater scenes. We present a novel approach that makes it possible to simulate multi-spectral underwater scenes, in a physically-based manner, in real time. Our key observation is the following: In the vertical direction, the steady decay in irradiance as a function of depth is characterized by the diffuse downwelling attenuation coefficient, which oceanographers routinely measure for different types of waters. We rely on a database of such real-world measurements to obtain an analytical approximation to the Radiative Transfer Equation, allowing for real-time spectral rendering with results comparable to Monte Carlo ground-truth references, in a fraction of the time. We show results simulating underwater appearance for the different optical water types, including volumetric shadows and dynamic, spatially varying lighting near the water surface.
BibTeX
@article {10.1111:cgf.15009,
journal = {Computer Graphics Forum},
title = {{Real-Time Underwater Spectral Rendering}},
author = {Monzon, Nestor and Gutierrez, Diego and Akkaynak, Derya and Muñoz, Adolfo},
year = {2024},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.15009}
}
journal = {Computer Graphics Forum},
title = {{Real-Time Underwater Spectral Rendering}},
author = {Monzon, Nestor and Gutierrez, Diego and Akkaynak, Derya and Muñoz, Adolfo},
year = {2024},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.15009}
}