Show simple item record

dc.contributor.authorJin, Taeilen_US
dc.contributor.authorLee, Sung-Heeen_US
dc.contributor.editorChaine, Raphaëlleen_US
dc.contributor.editorDeng, Zhigangen_US
dc.contributor.editorKim, Min H.en_US
dc.date.accessioned2023-10-09T07:35:49Z
dc.date.available2023-10-09T07:35:49Z
dc.date.issued2023
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14962
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14962
dc.description.abstractWe present DAFNet, a novel data-driven framework capable of generating various actions for indoor environment interactions. By taking desired root and upper-body poses as control inputs, DAFNet generates whole-body poses suitable for furniture of various shapes and combinations. To enable the generation of diverse actions, we introduce an action predictor that automatically infers the probabilities of individual action types based on the control input and environment. The action predictor is learned in an unsupervised manner by training Gaussian Mixture Variational Autoencoder (GMVAE). Additionally, we propose a two-part normalizing flow-based pose generator that sequentially generates upper and lower body poses. This two-part model improves motion quality and the accuracy of satisfying conditions over a single model generating the whole body. Our experiments show that DAFNet can create continuous character motion for indoor scene scenarios, and both qualitative and quantitative evaluations demonstrate the effectiveness of our framework.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies -> Motion processing
dc.subjectComputing methodologies
dc.subjectMotion processing
dc.titleDAFNet: Generating Diverse Actions for Furniture Interaction by Learning Conditional Pose Distributionen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersMotion Capture and Generation
dc.description.volume42
dc.description.number7
dc.identifier.doi10.1111/cgf.14962
dc.identifier.pages12 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 42-Issue 7
    Pacific Graphics 2023 - Symposium Proceedings

Show simple item record