Show simple item record

dc.contributor.authorCen, Yunchien_US
dc.contributor.authorLi, Chenen_US
dc.contributor.authorLi, Frederick W. B.en_US
dc.contributor.authorYang, Bailinen_US
dc.contributor.authorLiang, Xiaohuien_US
dc.contributor.editorChaine, Raphaëlleen_US
dc.contributor.editorDeng, Zhigangen_US
dc.contributor.editorKim, Min H.en_US
dc.date.accessioned2023-10-09T07:34:58Z
dc.date.available2023-10-09T07:34:58Z
dc.date.issued2023
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14956
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14956
dc.description.abstractWe present a novel approach to differentiable rendering for participating media, addressing the challenge of computing scene parameter derivatives. While existing methods focus on derivative computation within volumetric path tracing, they fail to significantly improve computational performance due to the expensive computation of multiply-scattered light. To overcome this limitation, we propose a differential diffusion theory inspired by the classical diffusion equation. Our theory enables real-time computation of arbitrary derivatives such as optical absorption, scattering coefficients, and anisotropic parameters of phase functions. By solving derivatives through the differential form of the diffusion equation, our approach achieves remarkable speed gains compared to Monte Carlo methods. This marks the first differentiable rendering framework to compute scene parameter derivatives based on diffusion approximation. Additionally, we derive the discrete form of diffusion equation derivatives, facilitating efficient numerical solutions. Our experimental results using synthetic and realistic images demonstrate the accurate and efficient estimation of arbitrary scene parameter derivatives. Our work represents a significant advancement in differentiable rendering for participating media, offering a practical and efficient solution to compute derivatives while addressing the limitations of existing approaches.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies -> Volumetric models; Mathematics of computing -> Partial differential equations
dc.subjectComputing methodologies
dc.subjectVolumetric models
dc.subjectMathematics of computing
dc.subjectPartial differential equations
dc.titleA Differential Diffusion Theory for Participating Mediaen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersVolumetric Reconstruction
dc.description.volume42
dc.description.number7
dc.identifier.doi10.1111/cgf.14956
dc.identifier.pages19 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 42-Issue 7
    Pacific Graphics 2023 - Symposium Proceedings

Show simple item record