Show simple item record

dc.contributor.authorZhang, Lingen_US
dc.contributor.authorChen, Benen_US
dc.contributor.authorLiu, Zhengen_US
dc.contributor.authorXiao, Chunxiaen_US
dc.contributor.editorChaine, Raphaëlleen_US
dc.contributor.editorDeng, Zhigangen_US
dc.contributor.editorKim, Min H.en_US
dc.date.accessioned2023-10-09T07:34:19Z
dc.date.available2023-10-09T07:34:19Z
dc.date.issued2023
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14944
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14944
dc.description.abstractDespite natural image shadow removal methods have made significant progress, they often perform poorly for facial image due to the unique features of the face. Moreover, most learning-based methods are designed based on pixel-level strategies, ignoring the global contextual relationship in the image. In this paper, we propose a graph-based feature fusion network (GraphFFNet) for facial image shadow removal. We apply a graph-based convolution encoder (GCEncoder) to extract global contextual relationships between regions in the coarse shadow-less image produced by an image flipper. Then, we introduce a feature modulation module to fuse the global topological relation onto the image features, enhancing the feature representation of the network. Finally, the fusion decoder integrates all the effective features to reconstruct the image features, producing a satisfactory shadow-removal result. Experimental results demonstrate the superiority of the proposed GraphFFNet over the state-of-the-art and validate the effectiveness of facial image shadow removal.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies -> Shadow removal; Facial image; Feature fusion
dc.subjectComputing methodologies
dc.subjectShadow removal
dc.subjectFacial image
dc.subjectFeature fusion
dc.titleFacial Image Shadow Removal via Graph-based Feature Fusionen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersFace Reconstruction
dc.description.volume42
dc.description.number7
dc.identifier.doi10.1111/cgf.14944
dc.identifier.pages11 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • 42-Issue 7
    Pacific Graphics 2023 - Symposium Proceedings

Show simple item record