Show simple item record

dc.contributor.authorHe, Haoen_US
dc.contributor.authorLiang, Yixunen_US
dc.contributor.authorXiao, Shishien_US
dc.contributor.authorChen, Jierunen_US
dc.contributor.authorChen, Yingcongen_US
dc.contributor.editorChaine, Raphaëlleen_US
dc.contributor.editorDeng, Zhigangen_US
dc.contributor.editorKim, Min H.en_US
dc.date.accessioned2023-10-09T07:34:12Z
dc.date.available2023-10-09T07:34:12Z
dc.date.issued2023
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14940
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14940
dc.description.abstractNeural radiance fields (NeRF) have demonstrated a promising research direction for novel view synthesis. However, the existing approaches either require per-scene optimization that takes significant computation time or condition on local features which overlook the global context of images. To tackle this shortcoming, we propose the Conditionally Parameterized Neural Radiance Fields (CP-NeRF), a plug-in module that enables NeRF to leverage contextual information from different scales. Instead of optimizing the model parameters of NeRFs directly, we train a Feature Pyramid hyperNetwork (FPN) that extracts view-dependent global and local information from images within or across scenes to produce the model parameters. Our model can be trained end-to-end with standard photometric loss from NeRF. Extensive experiments demonstrate that our method can significantly boost the performance of NeRF, achieving state-of-the-art results in various benchmark datasets.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies Ñ Image-based rendering; 3D imaging
dc.subjectComputing methodologies Ñ Image
dc.subjectbased rendering
dc.subject3D imaging
dc.titleCP-NeRF: Conditionally Parameterized Neural Radiance Fields for Cross-scene Novel View Synthesisen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersModeling by Learning
dc.description.volume42
dc.description.number7
dc.identifier.doi10.1111/cgf.14940
dc.identifier.pages10 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 42-Issue 7
    Pacific Graphics 2023 - Symposium Proceedings

Show simple item record