dc.contributor.author | Huang, Zhangjin | en_US |
dc.contributor.editor | Chaine, Raphaëlle | en_US |
dc.contributor.editor | Deng, Zhigang | en_US |
dc.contributor.editor | Kim, Min H. | en_US |
dc.date.accessioned | 2023-10-09T07:34:03Z | |
dc.date.available | 2023-10-09T07:34:03Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 1467-8659 | |
dc.identifier.uri | https://doi.org/10.1111/cgf.14933 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.1111/cgf14933 | |
dc.description.abstract | In this paper, we propose a novel surface subdivision scheme called non-box subdivision, which is generalized from fourdirectional S13 on-box splines. The resulting subdivision surfaces achieve C1 continuity with the convex hull property. This scheme can be regarded as either a four-directional subdivision or a special quadrilateral subdivision. When used as a quadrilateral subdivision, the proposed scheme can control the shape of the limit surface more flexibly than traditional schemes due to the natural introduction of auxiliary face control vertices. | en_US |
dc.publisher | The Eurographics Association and John Wiley & Sons Ltd. | en_US |
dc.subject | CCS Concepts: Computing methodologies -> Shape modeling | |
dc.subject | Computing methodologies | |
dc.subject | Shape modeling | |
dc.title | A Surface Subdivision Scheme Based on Four-Directional S^1_3 Non-Box Splines | en_US |
dc.description.seriesinformation | Computer Graphics Forum | |
dc.description.sectionheaders | Geometry | |
dc.description.volume | 42 | |
dc.description.number | 7 | |
dc.identifier.doi | 10.1111/cgf.14933 | |
dc.identifier.pages | 12 pages | |