Show simple item record

dc.contributor.authorBonneel, Nicolasen_US
dc.contributor.authorCoeurjolly, Daviden_US
dc.contributor.authorGueth, Pierreen_US
dc.contributor.authorLachaud, Jacques-Olivieren_US
dc.contributor.editorFu, Hongbo and Ghosh, Abhijeet and Kopf, Johannesen_US
dc.date.accessioned2018-10-07T14:58:10Z
dc.date.available2018-10-07T14:58:10Z
dc.date.issued2018
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.13549
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13549
dc.description.abstractThe Mumford-Shah functional approximates a function by a piecewise smooth function. Its versatility makes it ideal for tasks such as image segmentation or restoration, and it is now a widespread tool of image processing. Recent work has started to investigate its use for mesh segmentation and feature lines detection, but we take the stance that the power of this functional could reach far beyond these tasks and integrate the everyday mesh processing toolbox. In this paper, we discretize an Ambrosio-Tortorelli approximation via a Discrete Exterior Calculus formulation. We show that, combined with a new shape optimization routine, several mesh processing problems can be readily tackled within the same framework. In particular, we illustrate applications in mesh denoising, normal map embossing, mesh inpainting and mesh segmentation.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.titleMumford-Shah Mesh Processing using the Ambrosio-Tortorelli Functionalen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersGeometry Processing
dc.description.volume37
dc.description.number7
dc.identifier.doi10.1111/cgf.13549
dc.identifier.pages75-85


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 37-Issue 7
    Pacific Graphics 2018 - Symposium Proceedings

Show simple item record