Spatial Matching of Animated Meshes
Abstract
This paper presents a new technique which makes use of deformation and motion properties between animated meshes for finding their spatial correspondences. Given a pair of animated meshes exhibiting a semantically similar motion, we compute a sparse set of feature points on each mesh and compute spatial correspondences among them so that points with similar motion behavior are put in correspondence. At the core of our technique is our new, dynamic feature descriptor named AnimHOG, which encodes local deformation characteristics. AnimHOG is ob-tained by computing the gradient of a scalar field inside the spatiotemporal neighborhood of a point of interest, where the scalar values are obtained from the deformation characteristic associated with each vertex and at each frame. The final matching has been formulated as a discreet optimization problem that finds the matching of each feature point on the source mesh so that the descriptor similarity between the corresponding feature pairs as well as compatibility and consistency as measured across the pairs of correspondences are maximized. Consequently, reliable correspondences can be found even among the meshes of very different shape, as long as their motions are similar. We demonstrate the performance of our technique by showing the good quality of matching results we obtained on a number of animated mesh pairs.
BibTeX
@article {10.1111:cgf.13000,
journal = {Computer Graphics Forum},
title = {{Spatial Matching of Animated Meshes}},
author = {Seo, Hyewon and Cordier, Frederic},
year = {2016},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.13000}
}
journal = {Computer Graphics Forum},
title = {{Spatial Matching of Animated Meshes}},
author = {Seo, Hyewon and Cordier, Frederic},
year = {2016},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.13000}
}
Collections
Related items
Showing items related by title, author, creator and subject.
-
Time-constrained Animation Rendering on Desktop Grids
Aggarwal, Vibhor; Debattista, Kurt; Bashford-Rogers, Thomas; Chalmers, Alan (The Eurographics Association, 2012)The computationally intensive nature of high-fidelity rendering has led to a dependence on parallel infrastructures for generating animations. However, such an infrastructure is expensive thereby restricting easy access ... -
Texturing and Hypertexturing of Volumetric Objects
Miller, Chris M.; Jones, Mark W. (The Eurographics Association, 2005)Texture mapping is an extremely powerful and flexible tool for adding complex surface detail to an object. This paper introduces a method of surface texturing and hypertexturing complex volumetric objects in real-time. We ... -
Ray Tracing Dynamic Scenes with Shadows on the GPU
Guntury, Sashidhar; Narayanan, P. J. (The Eurographics Association, 2010)We present fast ray tracing of dynamic scenes in this paper with primary and shadow rays. We present a GPUfriendly strategy to bring coherency to shadow rays, based on previous work on grids as acceleration structures. We ...