Show simple item record

dc.contributor.authorWu, Feiranen_US
dc.contributor.authorChen, Guoningen_US
dc.contributor.authorHuang, Jinen_US
dc.contributor.authorTao, Yuboen_US
dc.contributor.authorChen, Weien_US
dc.contributor.editorStam, Jos and Mitra, Niloy J. and Xu, Kunen_US
dc.date.accessioned2015-10-07T05:12:15Z
dc.date.available2015-10-07T05:12:15Z
dc.date.issued2015en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.12755en_US
dc.description.abstractExploring multivariate spatial data attracts much attention in the visualization community. The main challenge lies in that automatic analysis techniques is insufficient in discovering complicated patterns with the perspective of human beings, while visualization techniques are incapable of accurately identifying the features of interest. This paper addresses this contradiction by enhancing automatic analysis techniques with human intelligence in an iterative visual exploration process. The integrated system, called EasyXplorer, provides a suite of intuitive clustering, dimension reduction, visual encoding and filtering widgets within 2D and 3D views, allowing an inexperienced user to visually explore and reason undiscovered features with several simple interactions. Case studies show the quality and scalability of our approach in quite challenging examples.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectI.3.8 [Computer Graphics]en_US
dc.subjectApplicationsen_US
dc.subjectMultivariate 3D Dataen_US
dc.subjectVisual Analysisen_US
dc.titleEasyXplorer: A Flexible Visual Exploration Approach for Multivariate Spatial Dataen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.sectionheadersSimulation and Visualizationen_US
dc.description.volume34en_US
dc.description.number7en_US
dc.identifier.doi10.1111/cgf.12755en_US
dc.identifier.pages163-172en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record