Show simple item record

dc.contributor.authorBoscaini, Davideen_US
dc.contributor.authorEynard, Davideen_US
dc.contributor.authorKourounis, Drososen_US
dc.contributor.authorBronstein, Michael M.en_US
dc.contributor.editorOlga Sorkine-Hornung and Michael Wimmeren_US
dc.date.accessioned2015-04-16T07:44:26Z
dc.date.available2015-04-16T07:44:26Z
dc.date.issued2015en_US
dc.identifier.urihttp://dx.doi.org/10.1111/cgf.12558en_US
dc.description.abstractWe formulate the problem of shape-from-operator (SfO), recovering an embedding of a mesh from intrinsic operators defined through the discrete metric (edge lengths). Particularly interesting instances of our SfO problem include: shape-from-Laplacian, allowing to transfer style between shapes; shape-from-difference operator, used to synthesize shape analogies; and shape-from-eigenvectors, allowing to generate 'intrinsic averages' of shape collections. Numerically, we approach the SfO problem by splitting it into two optimization sub-problems: metric-from-operator (reconstruction of the discrete metric from the intrinsic operator) and embedding-from-metric (finding a shape embedding that would realize a given metric, a setting of the multidimensional scaling problem). We study numerical properties of our problem, exemplify it on several applications, and discuss its imitations.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectI.3 [Computer graphics]en_US
dc.subjectShape modelingen_US
dc.subjectShape analysisen_US
dc.titleShape-from-Operator: Recovering Shapes from Intrinsic Operatorsen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.sectionheadersShape Manipulationen_US
dc.description.volume34en_US
dc.description.number2en_US
dc.identifier.doi10.1111/cgf.12558en_US
dc.identifier.pages265-274en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record