Shape-from-Operator: Recovering Shapes from Intrinsic Operators
Abstract
We formulate the problem of shape-from-operator (SfO), recovering an embedding of a mesh from intrinsic operators defined through the discrete metric (edge lengths). Particularly interesting instances of our SfO problem include: shape-from-Laplacian, allowing to transfer style between shapes; shape-from-difference operator, used to synthesize shape analogies; and shape-from-eigenvectors, allowing to generate 'intrinsic averages' of shape collections. Numerically, we approach the SfO problem by splitting it into two optimization sub-problems: metric-from-operator (reconstruction of the discrete metric from the intrinsic operator) and embedding-from-metric (finding a shape embedding that would realize a given metric, a setting of the multidimensional scaling problem). We study numerical properties of our problem, exemplify it on several applications, and discuss its imitations.
BibTeX
@article {10.1111:cgf.12558,
journal = {Computer Graphics Forum},
title = {{Shape-from-Operator: Recovering Shapes from Intrinsic Operators}},
author = {Boscaini, Davide and Eynard, Davide and Kourounis, Drosos and Bronstein, Michael M.},
year = {2015},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
DOI = {10.1111/cgf.12558}
}
journal = {Computer Graphics Forum},
title = {{Shape-from-Operator: Recovering Shapes from Intrinsic Operators}},
author = {Boscaini, Davide and Eynard, Davide and Kourounis, Drosos and Bronstein, Michael M.},
year = {2015},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
DOI = {10.1111/cgf.12558}
}