Show simple item record

dc.contributor.authorYang, Haiyanen_US
dc.contributor.authorPajarola, Renatoen_US
dc.contributor.editorGuthe, Michaelen_US
dc.contributor.editorGrosch, Thorstenen_US
dc.date.accessioned2023-09-25T11:38:06Z
dc.date.available2023-09-25T11:38:06Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-232-5
dc.identifier.urihttps://doi.org/10.2312/vmv.20231233
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/vmv20231233
dc.description.abstractScatterplot sampling has long been an efficient and effective way to resolve the overplotting issues commonly occurring in large-scale scatterplot visualization applications. However, it is challenging to preserve the existence of low-density points or outliers after sampling for a sub-sampling algorithm if, at the same time, faithfully representing the relative data densities is of importance. In this work, we propose to address this issue in a visual-assisted manner. While the whole dataset is sub-sampled, the density of the outliers is modeled and visually integrated into the final scatterplot together with the sub-sampled point data. We showcase the effectiveness of our proposed method in various cases and user studies.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Information visualization; Visualization techniques
dc.subjectHuman
dc.subjectcentered computing → Information visualization
dc.subjectVisualization techniques
dc.titleVisual-assisted Outlier Preservation for Scatterplot Samplingen_US
dc.description.seriesinformationVision, Modeling, and Visualization
dc.description.sectionheadersImage Visualization and Analysis
dc.identifier.doi10.2312/vmv.20231233
dc.identifier.pages115-121
dc.identifier.pages7 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License