Show simple item record

dc.contributor.authorFriederici, Ankeen_US
dc.contributor.authorGünther, Tobiasen_US
dc.contributor.authorRössl, Christianen_US
dc.contributor.authorTheisel, Holgeren_US
dc.contributor.editorMatthias Hullin and Reinhard Klein and Thomas Schultz and Angela Yaoen_US
dc.date.accessioned2017-09-25T06:55:29Z
dc.date.available2017-09-25T06:55:29Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-049-9
dc.identifier.urihttp://dx.doi.org/10.2312/vmv.20171264
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/vmv20171264
dc.description.abstractVector Field Topology is the standard approach for the analysis of asymptotic particle behavior in a vector field flow: A topological skeleton is separating the flow into regions by the movement of massless particles for an integration time converging to infinity. In some use cases however only a finite integration time is feasible. To this end, the idea of a topological skeleton with an augmented finite-time separation measure was introduced for 2D vector fields. We lay the theoretical foundation for that method and extend it to 3D vector fields. From the observation of steady vector fields in a temporal context we show the Galilean invariance of Vector Field Topology. In addition, we present a set of possible visualizations for finite-time topology on 3D topological skeletons.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleFinite Time Steady Vector Field Topology - Theoretical Foundation and 3D Caseen_US
dc.description.seriesinformationVision, Modeling & Visualization
dc.description.sectionheadersScientific Visualization
dc.identifier.doi10.2312/vmv.20171264
dc.identifier.pages95-102


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • VMV17
    ISBN 978-3-03868-049-9

Show simple item record