Show simple item record

dc.contributor.authorMevenkamp, Niklasen_US
dc.contributor.authorYankovich, Andrew B.en_US
dc.contributor.authorVoyles, Paul M.en_US
dc.contributor.authorBerkels, Benjaminen_US
dc.contributor.editorJan Bender and Arjan Kuijper and Tatiana von Landesberger and Holger Theisel and Philipp Urbanen_US
dc.date.accessioned2014-12-16T07:26:03Z
dc.date.available2014-12-16T07:26:03Z
dc.date.issued2014en_US
dc.identifier.isbn978-3-905674-74-3en_US
dc.identifier.urihttp://dx.doi.org/10.2312/vmv.20141277en_US
dc.description.abstractHigh-Angle Annular Darkfield Scanning Transmission Electron Microscopy (HAADF-STEM) allows to take images at atomic scale with a contrast proportional to the atomic number. STEM acquires an image line-by-line, pixel-by-pixel leading to characteristic distortions. Furthermore, STEM images of beam sensitive materials have to be taken with short exposure times, leading to low contrast images with Poisson noise. In this paper, we propose an extension of Non-local Means (NLM) tailored to STEM images of crystalline structures. To find similar patches, we introduce an adaptive non-local search strategy that exploits the periodic structure of the crystal images. Furthermore, we extend the patch similarity measure to take into account the horizontal distortions typical for STEM images. Moreover, we discuss the Anscombe transform and the Poisson likelihood ratio to deal with Poisson noise. Finally, the resulting methods are compared to BM3D with Anscombe tranform and PURE-LET on simulated and real data.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.4.3 [Image Processing and Computer Vision]en_US
dc.subjectEnhancementen_US
dc.subjectFilteringen_US
dc.titleNon-local Means for Scanning Transmission Electron Microscopy Images and Poisson Noise based on Adaptive Periodic Similarity Search and Patch Regularizationen_US
dc.description.seriesinformationVision, Modeling & Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • VMV14
    ISBN 978-3-905674-74-3

Show simple item record