Show simple item record

dc.contributor.authorKreylos, Oliveren_US
dc.contributor.authorHamann, Bernden_US
dc.contributor.editorGröller, E., Löffelmann, H., Ribarsky, W.en_US
dc.date.accessioned2015-11-16T13:39:49Z
dc.date.available2015-11-16T13:39:49Z
dc.date.issued1999en_US
dc.identifier.isbn978-3-7091-6803-5en_US
dc.identifier.issnEG: 1727-5296en_US
dc.identifier.issnSpringer: 0946-2767en_US
dc.identifier.urihttp://dx.doi.org/10.2312/vissym19991019en_US
dc.description.abstractWe describe a method to create optimal linear spline approximations to arbitrary functions of one or two variables, given as scattered data without known connectivity.We start with an initial approximation consisting of a fixed number of vertices and improve this approximation by choosing different vertices, governed by a simulated annealing algorithm. In the case of one variable, the approximation is defined by line segments; in the case of two variables, the vertices are connected to define a Delaunay triangulation of the selected subset of sites in the plane. In a second version of this algorithm, specifically designed for the bivariate case, we choose vertex sets and also change the triangulation to achieve both optimal vertex placement and optimal triangulation. We then create a hierarchy of linear spline approximations, each one being a superset of all lower-resolution ones.en_US
dc.publisherSpringer and The Eurographics Associationen_US
dc.titleOn Simulated Annealing and the Construction of Linear Spline Approximations for Scattered Dataen_US
dc.description.seriesinformationVisSym99: Joint Eurographics - IEEE TCVG Symposium on Visualizationen_US
dc.description.sectionheadersPapersen_US
dc.identifier.doi10.2312/vissym19991019en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record