Show simple item record

dc.contributor.authorPolthier, Konraden_US
dc.contributor.authorSchmies, Markusen_US
dc.contributor.editorGröller, E., Löffelmann, H., Ribarsky, W.en_US
dc.date.accessioned2015-11-16T13:39:48Z
dc.date.available2015-11-16T13:39:48Z
dc.date.issued1999en_US
dc.identifier.isbn978-3-7091-6803-5en_US
dc.identifier.issnEG: 1727-5296en_US
dc.identifier.issnSpringer: 0946-2767en_US
dc.identifier.urihttp://dx.doi.org/10.2312/vissym19991009en_US
dc.description.abstractOn a curved surface the front of a point wave evolves in concentric circles which start to overlap and branch after a certain time. This evolution is described by the geodesic flow and helps us to understand the geometry of surfaces. In this paper we compute the evolution of distance circles on polyhedral surfaces and develop a method to visualize the set of circles, their overlapping, branching, and their temporal evolution simultaneously. We consider the evolution as an interfering wave on the surface, and extend isometric texture maps to efficiently handle the branching and overlapping of the wave.en_US
dc.publisherSpringer and The Eurographics Associationen_US
dc.titleGeodesic Flow on Polyhedral Surfacesen_US
dc.description.seriesinformationVisSym99: Joint Eurographics - IEEE TCVG Symposium on Visualizationen_US
dc.description.sectionheadersPapersen_US
dc.identifier.doi10.2312/vissym19991009en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record