Show simple item record

dc.contributor.authorJi, Chengtaoen_US
dc.contributor.authorMaurits, Natasha M.en_US
dc.contributor.authorRoerdink, Jos B. T. M.en_US
dc.contributor.editorPuig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-Pauen_US
dc.date.accessioned2018-09-19T15:19:28Z
dc.date.available2018-09-19T15:19:28Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-056-7
dc.identifier.issn2070-5786
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/vcbm20181233
dc.identifier.urihttps://doi.org/10.2312/vcbm.20181233
dc.description.abstractThe community structure of networks plays an important role in their analysis. It represents a high-level organization of objects within a network. However, in many application domains, the relationship between objects in a network changes over time, resulting in the change of community structure (the partition of a network), their attributes (the composition of a community and the values of relationships between communities), or both. Previous animation or timeline-based representations either visualize the change of attributes of networks or the community structure. There is no single method that can optimally show graphs that change in both structure and attributes. In this paper we propose a method for the case of dynamic EEG coherence networks to assist users in exploring the dynamic changes in both their community structure and their attributes. The method uses an initial timeline representation which was designed to provide an overview of changes in community structure. In addition, we order communities and assign colors to them based on their relationships by adapting the existing Temporal Multidimensional Scaling (TMDS) method. Users can identify evolution patterns of dynamic networks from this visualization.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectApplied computing
dc.subjectLife and medical sciences
dc.subjectHuman
dc.subjectcentered computing
dc.subjectInformation visualization
dc.titleVisual Analysis of Evolution of EEG Coherence Networks employing Temporal Multidimensional Scalingen_US
dc.description.seriesinformationEurographics Workshop on Visual Computing for Biology and Medicine
dc.description.sectionheadersHead and Brain
dc.identifier.doi10.2312/vcbm.20181233
dc.identifier.pages95-99


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record