Show simple item record

dc.contributor.authorAlakkari, Salaheddinen_US
dc.contributor.authorDingliana, Johnen_US
dc.contributor.editorStefan Bruckner and Bernhard Preim and Anna Vilanova and Helwig Hauser and Anja Hennemuth and Arvid Lundervolden_US
dc.date.accessioned2016-09-07T05:37:28Z
dc.date.available2016-09-07T05:37:28Z
dc.date.issued2016
dc.identifier.isbn978-3-03868-010-9
dc.identifier.issn2070-5786
dc.identifier.urihttp://dx.doi.org/10.2312/vcbm.20161271
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/vcbm20161271
dc.description.abstractIn this paper, we investigate the use of Principal Component Analysis (PCA) for image-based volume visualization. Firstly we compute a high-dimensional eigenspace using training images, pre-rendered using a standard ray-caster, from a spherically distributed range of camera positions. Then, our system is able to synthesize arbitrary views of the dataset with minimal computation at runtime. We propose a perceptually-adaptive technique to minimize data size and computational complexity whilst preserving perceptual quality of the visualization, in comparison to corresponding ray-cast images. Results indicate that PCA is able to sufficiently learn the full view-independent volumetric model through a finite number of training images and generalize the computed eigenspace to produce high quality images from arbitrary viewpoints, on demand. The approach has potential application in client-server volume visualization or where results of a computationally-complex 3D imaging process need to be interactively visualized on a display device of limited specification.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleVolume Visualization Using Principal Component Analysisen_US
dc.description.seriesinformationEurographics Workshop on Visual Computing for Biology and Medicine
dc.description.sectionheadersNovel Visualization Techniques (Short Papers)
dc.identifier.doi10.2312/vcbm.20161271
dc.identifier.pages53-57


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record