Show simple item record

dc.contributor.authorNovikov, Alexey A.en_US
dc.contributor.authorWimmer, Mariaen_US
dc.contributor.authorMajor, Daviden_US
dc.contributor.authorBühler, Katjaen_US
dc.contributor.editorKatja Bühler and Lars Linsen and Nigel W. Johnen_US
dc.date.accessioned2015-09-14T04:49:02Z
dc.date.available2015-09-14T04:49:02Z
dc.date.issued2015en_US
dc.identifier.isbn978-3-905674-82-8en_US
dc.identifier.issn2070-5786en_US
dc.identifier.urihttp://dx.doi.org/10.2312/vcbm.20151216en_US
dc.description.abstractWe introduce a cascade classification algorithm for bifurcation detection in Computed Tomography Angiography (CTA) scans of blood vessels. The proposed algorithm analyzes the vessel surrounding by a trained classifier first, followed by an accurate segmentation of the vessel outer wall by Morphological Active Contour Without Edges and finally extracts the boundary features of the segmented object and classifies its shape by Approximate K-nearest Neighbour classifier. The algorithm shows encouraging and competitive results for blood vessels from various parts of a human body including head, neck and legs.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.4.8 [Image Processing and Computer Vision]en_US
dc.subjectScene Analysisen_US
dc.subjectObject recognitionen_US
dc.titleA Two-Level Cascade Classification Algorithm for Real-Time Bifurcation Detection in CTA Images of Blood Vesselsen_US
dc.description.seriesinformationEurographics Workshop on Visual Computing for Biology and Medicineen_US
dc.description.sectionheadersVisual Computing for Vessel Structuresen_US
dc.identifier.doi10.2312/vcbm.20151216en_US
dc.identifier.pages131-138en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record