Show simple item record

dc.contributor.authorLevet, Francescoen_US
dc.contributor.authorDuval-Poo, Miguel A.en_US
dc.contributor.authorVito, Ernesto Deen_US
dc.contributor.authorOdone, Francescaen_US
dc.contributor.editorGiovanni Pintore and Filippo Stancoen_US
dc.date.accessioned2016-10-05T06:27:11Z
dc.date.available2016-10-05T06:27:11Z
dc.date.issued2016
dc.identifier.isbn978-3-03868-026-0
dc.identifier.issn-
dc.identifier.urihttp://dx.doi.org/10.2312/stag.20161375
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/stag20161375
dc.description.abstractIn this paper we propose a method for segmenting blood vessels in retinal images based on the shearlet transform. Shearlets are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal discontinuities such as edges and corners at multiple scales. The algorithm we propose builds on the idea of enhancing ridgelike structures at different scales by computing the shearlet transform with an appropriate mother function, the mexican hat wavelet. This allows us to detect precisely structures of different widths. We provide an experimental analysis of our approach on a benchmark dataset and we show very good performances in comparison with other multi-resolution methods from the state of the art.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleRetinal Image Analysis with Shearletsen_US
dc.description.seriesinformationSmart Tools and Apps for Graphics - Eurographics Italian Chapter Conference
dc.description.sectionheadersReconstruction and Image Analysis
dc.identifier.doi10.2312/stag.20161375
dc.identifier.pages151-156


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record