Show simple item record

dc.contributor.authorHu, S. M.en_US
dc.contributor.authorLi, C. F.en_US
dc.contributor.authorZhang, H.en_US
dc.contributor.editorGershon Elber and Nicholas Patrikalakis and Pere Bruneten_US
dc.date.accessioned2016-02-17T18:02:47Z
dc.date.available2016-02-17T18:02:47Z
dc.date.issued2004en_US
dc.identifier.isbn3-905673-55-Xen_US
dc.identifier.issn1811-7783en_US
dc.identifier.urihttp://dx.doi.org/10.2312/sm.20041407en_US
dc.description.abstractWhen two topologically identical shapes are blended, various possible transformation paths exist from the source shape to the target shape. Which one is the most plausible? Here we propose that the transformation process should obey a quasi-physical law. This paper combines morphing with deformation theory from continuum mechanics. By using strain energy, which reflects the magnitude of deformation, as an objective function, we convert the problem of path interpolation into an unconstrained optimization problem. To reduce the number of variables in the optimization we adopt shape functions, as used in the finite element method (FEM). A point-to-point correspondence between the source and target shapes is naturally established using these polynomial functions plus a distance map.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.7 [Computer Graphics]en_US
dc.subjectAnimationen_US
dc.titleActual Morphing: A Physical-Based Approach for Blending Two 2D/3D Shapesen_US
dc.description.seriesinformationSolid Modelingen_US
dc.description.sectionheadersPosters Sessionen_US
dc.identifier.doi10.2312/sm.20041407en_US
dc.identifier.pages309-314en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record