Show simple item record

dc.contributor.authorBereg, S.en_US
dc.contributor.authorJiang, M.en_US
dc.contributor.authorZhu, B.en_US
dc.contributor.editorGershon Elber and Nicholas Patrikalakis and Pere Bruneten_US
dc.date.accessioned2016-02-17T18:02:47Z
dc.date.available2016-02-17T18:02:47Z
dc.date.issued2004en_US
dc.identifier.isbn3-905673-55-Xen_US
dc.identifier.issn1811-7783en_US
dc.identifier.urihttp://dx.doi.org/10.2312/sm.20041406en_US
dc.description.abstractIn this paper, we present the first nontrivial theoretical bound on the quality of the 3D solids generated by any contour interpolation method. Given two arbitrary parallel contour slices with n vertices in 3D, let a be the smallest angle in the constrained Delaunay triangulation of the corresponding 2D contour overlay, we present a contour interpolation method which reconstructs a 3D solid with the minimum dihedral angle of at least a 8 . Our algorithm runs in O(nlogn) time where n is the size of the contour overlay. We also present a heuristic algorithm that optimizes the dihedral angles of a mesh representing a surface in 3D.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectCurveen_US
dc.subjectsurfaceen_US
dc.subjectsoliden_US
dc.subjectand object representationsen_US
dc.titleContour Interpolation with Bounded Dihedral Anglesen_US
dc.description.seriesinformationSolid Modelingen_US
dc.description.sectionheadersPosters Sessionen_US
dc.identifier.doi10.2312/sm.20041406en_US
dc.identifier.pages303-308en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record