dc.contributor.author | Bereg, S. | en_US |
dc.contributor.author | Jiang, M. | en_US |
dc.contributor.author | Zhu, B. | en_US |
dc.contributor.editor | Gershon Elber and Nicholas Patrikalakis and Pere Brunet | en_US |
dc.date.accessioned | 2016-02-17T18:02:47Z | |
dc.date.available | 2016-02-17T18:02:47Z | |
dc.date.issued | 2004 | en_US |
dc.identifier.isbn | 3-905673-55-X | en_US |
dc.identifier.issn | 1811-7783 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/sm.20041406 | en_US |
dc.description.abstract | In this paper, we present the first nontrivial theoretical bound on the quality of the 3D solids generated by any contour interpolation method. Given two arbitrary parallel contour slices with n vertices in 3D, let a be the smallest angle in the constrained Delaunay triangulation of the corresponding 2D contour overlay, we present a contour interpolation method which reconstructs a 3D solid with the minimum dihedral angle of at least a 8 . Our algorithm runs in O(nlogn) time where n is the size of the contour overlay. We also present a heuristic algorithm that optimizes the dihedral angles of a mesh representing a surface in 3D. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | I.3.5 [Computer Graphics] | en_US |
dc.subject | Curve | en_US |
dc.subject | surface | en_US |
dc.subject | solid | en_US |
dc.subject | and object representations | en_US |
dc.title | Contour Interpolation with Bounded Dihedral Angles | en_US |
dc.description.seriesinformation | Solid Modeling | en_US |
dc.description.sectionheaders | Posters Session | en_US |
dc.identifier.doi | 10.2312/sm.20041406 | en_US |
dc.identifier.pages | 303-308 | en_US |