Show simple item record

dc.contributor.authorAkleman, E.en_US
dc.contributor.authorSrinivasan, V.en_US
dc.contributor.editorGershon Elber and Nicholas Patrikalakis and Pere Bruneten_US
dc.date.accessioned2016-02-17T18:02:47Z
dc.date.available2016-02-17T18:02:47Z
dc.date.issued2004en_US
dc.identifier.isbn3-905673-55-Xen_US
dc.identifier.issn1811-7783en_US
dc.identifier.urihttp://dx.doi.org/10.2312/sm.20041399en_US
dc.description.abstractIn this paper, we present a subdivision-inspired scheme to construct generalized Sierpinski polyhedron. Unlike usual Sierpinski polyhedra construction schemes, which create either an infinite set of disconnected tetrahedra or a non-manifold polyhedron, our robust construction scheme creates one connected and manifold polyhedron. Moreover, unlike the original schemes, this new scheme can be applied to any manifold polyhedral mesh and based on the shape of this initial polyhedra a large variety of Sierpinski polyhedra can be obtained.Our basic scheme can be viewed as applying simplest subdivision scheme [23] to an input polyhedron, but retaining old vertices. The porous structure is then obtained by removing the refined facets of the simplest subdivision.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleConnected and Manifold Sierpinski Polyhedraen_US
dc.description.seriesinformationSolid Modelingen_US
dc.description.sectionheadersPosters Sessionen_US
dc.identifier.doi10.2312/sm.20041399en_US
dc.identifier.pages261-266en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record