Show simple item record

dc.contributor.authorFloriani, L. Deen_US
dc.contributor.authorHui, A.en_US
dc.contributor.editorGershon Elber and Nicholas Patrikalakis and Pere Bruneten_US
dc.date.accessioned2016-02-17T18:02:46Z
dc.date.available2016-02-17T18:02:46Z
dc.date.issued2004en_US
dc.identifier.isbn3-905673-55-Xen_US
dc.identifier.issn1811-7783en_US
dc.identifier.urihttp://dx.doi.org/10.2312/sm.20041387en_US
dc.description.abstractWe address the problem of updating non-manifold mixed-dimensional objects, described by three-dimensional simplicial complexes embedded in 3D Euclidean space. We consider two local update operations, edge collapse and vertex split, which are the most common operations performed for simplifying a simplicial complex. We examine the effect of such operations on a 3D simplicial complex, and we describe algorithms for edge collapse and vertex split on a compact representation of a 3D simplicial complex, that we call the Non-Manifold Indexed data structure with Adjacencies (NMIA). We also discuss how to encode the information needed for performing a vertex split and an edge collapse on a 3D simplicial complex. The encoding of such information together with the algorithms for updating the NMIA data structure form the basis for de ning progressive as well as multi-resolution representations for objects described by 3D simplicial complexes and for extracting variable-resolution object descriptions.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectCurveen_US
dc.subjectsurfaceen_US
dc.subjectsolid and object representationsen_US
dc.titleUpdate Operations on 3D Simplicial Decompositions of Non-manifold Objectsen_US
dc.description.seriesinformationSolid Modelingen_US
dc.description.sectionheadersSimplicial Geometric Representationsen_US
dc.identifier.doi10.2312/sm.20041387en_US
dc.identifier.pages169-180en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record