Show simple item record

dc.contributor.authorHoffmann, C.en_US
dc.contributor.authorPark, with G.en_US
dc.contributor.authorSimard, J-R.en_US
dc.contributor.authorStewart, N. F.en_US
dc.contributor.editorGershon Elber and Nicholas Patrikalakis and Pere Bruneten_US
dc.date.accessioned2016-02-17T18:02:44Z
dc.date.available2016-02-17T18:02:44Z
dc.date.issued2004en_US
dc.identifier.isbn3-905673-55-Xen_US
dc.identifier.issn1811-7783en_US
dc.identifier.urihttp://dx.doi.org/10.2312/sm.20041371en_US
dc.description.abstractSurface interrogation and intersection depend crucially on good root-finding algorithms, which in turn depend on accurate polynomial evaluation. Conventional algorithms for evaluation typically encounter difficulties near multiple roots, or roots that are very close, and this may lead to gross errors in the geometric computation, or even catastrophic failure. In this paper we study the cost and accuracy of several approaches to polynomial evaluation, explaining the reasons for non-convergence of certain methods, and supporting our subsequent conclusions with the results of benchmarking experiments.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectG.1 [Numerical Analysis]en_US
dc.subjectI.3.5 [Computational Geometry and Object Modeling]en_US
dc.subjectJ.6 [Computeren_US
dc.subjectAided Engineering]en_US
dc.titleResidual Iteration and Accurate Polynomial Evaluation for Shape-interrogation Applicationsen_US
dc.description.seriesinformationSolid Modelingen_US
dc.description.sectionheadersInvited Talk 1en_US
dc.identifier.doi10.2312/sm.20041371en_US
dc.identifier.pages9-14en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record