Show simple item record

dc.contributor.authorSassen, Josuaen_US
dc.contributor.authorHeeren, Behrenden_US
dc.contributor.authorHildebrandt, Klausen_US
dc.contributor.authorRumpf, Martinen_US
dc.contributor.editorBommes, David and Huang, Huien_US
dc.date.accessioned2019-07-11T06:16:27Z
dc.date.available2019-07-11T06:16:27Z
dc.date.issued2019
dc.identifier.isbn978-3-03868-094-9
dc.identifier.issn1727-8384
dc.identifier.urihttps://doi.org/10.2312/sgp.20191213
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sgp20191213
dc.description.abstractWe consider Nonlinear Rotation-Invariant Coordinates (NRIC) representing triangle meshes with fixed combinatorics as a vector stacking all edge lengths and dihedral angles. Previously, conditions for the existence of vertex positions matching given NRIC have been established. We develop the machinery needed to use NRIC for solving geometric optimization problems. Moreover, we introduce a fast and robust algorithm that reconstructs vertex positions from close-to integrable NRIC. Our experiments underline that NRIC-based optimization is especially effective for near-isometric problems.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleSolving Variational Problems Using Nonlinear Rotation-invariant Coordinatesen_US
dc.description.seriesinformationSymposium on Geometry Processing 2019- Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/sgp.20191213
dc.identifier.pages1-2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record