Show simple item record

dc.contributor.authorRodolà, Emanueleen_US
dc.contributor.authorLähner, Zorahen_US
dc.contributor.authorBronstein, Alex M.en_US
dc.contributor.authorBronstein, Michael M.en_US
dc.contributor.authorSolomon, Justinen_US
dc.contributor.editorJu, Tao and Vaxman, Amiren_US
dc.date.accessioned2018-07-08T15:28:00Z
dc.date.available2018-07-08T15:28:00Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-069-7
dc.identifier.issn1727-8384
dc.identifier.urihttps://doi.org/10.2312/sgp.20181182
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sgp20181182
dc.description.abstractWe consider the tasks of representing, analyzing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain. To apply these ideas in practice, we introduce localized spectral analysis of the product manifold as a novel tool for map processing.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]
dc.subjectComputational Geometry and Object Modeling
dc.subjectShape Analysis
dc.subject3D Shape Matching
dc.subjectGeometric Modeling
dc.titleFunctional Maps on Product Manifoldsen_US
dc.description.seriesinformationSymposium on Geometry Processing 2018- Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/sgp.20181182
dc.identifier.pages9-10


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record