Show simple item record

dc.contributor.authorSellán, Silviaen_US
dc.contributor.authorCheng, Herng Yien_US
dc.contributor.authorMa, Yumingen_US
dc.contributor.authorDembowski, Mitchellen_US
dc.contributor.authorJacobson, Alecen_US
dc.contributor.editorJu, Tao and Vaxman, Amiren_US
dc.date.accessioned2018-07-08T15:27:59Z
dc.date.available2018-07-08T15:27:59Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-069-7
dc.identifier.issn1727-8384
dc.identifier.urihttps://doi.org/10.2312/sgp.20181181
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sgp20181181
dc.description.abstractWhen finding analytical solutions to Partial Differential Equations (PDEs) becomes impossible, it is useful to approximate them via a discrete mesh of the domain. Sometimes a robust triangular (2D) or tetrahedral (3D) mesh of the whole domain is a hard thing to accomplish, and in those cases we advocate for breaking up the domain in various different subdomains with nontrivial intersection and to find solutions for the equation in each of them individually. Although this approach solves one issue,it creates another, i.e. what constraints to impose on the separate solutions in a way that they converge to true solution on their union. We present a method that solves this problem for the most common second and fourth order equations in graphics.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleSolving PDEs on Deconstructed Domainsen_US
dc.description.seriesinformationSymposium on Geometry Processing 2018- Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/sgp.20181181
dc.identifier.pages7-8


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record