dc.contributor.author | Sarkar, Kripasindhu | en_US |
dc.contributor.author | Bernard, Florian | en_US |
dc.contributor.author | Varanasi, Kiran | en_US |
dc.contributor.author | Theobalt, Christian | en_US |
dc.contributor.author | Stricker, Didier | en_US |
dc.contributor.editor | Ju, Tao and Vaxman, Amir | en_US |
dc.date.accessioned | 2018-07-08T15:27:57Z | |
dc.date.available | 2018-07-08T15:27:57Z | |
dc.date.issued | 2018 | |
dc.identifier.isbn | 978-3-03868-069-7 | |
dc.identifier.issn | 1727-8384 | |
dc.identifier.uri | https://doi.org/10.2312/sgp.20181180 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/sgp20181180 | |
dc.description.abstract | We formulate the problem of point-cloud denoising in terms of a dictionary learning framework over square surface patches. Assuming that many of the local patches (in the unknown noise-free point-cloud) contain redundancies due to surface smoothness and repetition, we estimate a low-dimensional affine subspace that (approximately) explains the extracted noisy patches. This is achieved via a structured low-rank matrix factorization that imposes smoothness on the patch dictionary and sparsity on the coefficients. We show experimentally that our method outperforms existing denoising approaches in various noise scenarios. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Computing methodologies | |
dc.subject | Shape analysis | |
dc.title | Denoising of Point-clouds Based on Structured Dictionary Learning | en_US |
dc.description.seriesinformation | Symposium on Geometry Processing 2018- Posters | |
dc.description.sectionheaders | Posters | |
dc.identifier.doi | 10.2312/sgp.20181180 | |
dc.identifier.pages | 5-6 | |