Show simple item record

dc.contributor.authorChunxu Xuen_US
dc.contributor.authorYong-Jin Liuen_US
dc.contributor.authorQian Sunen_US
dc.contributor.authorJinyan Lien_US
dc.contributor.authorYing Heen_US
dc.contributor.editorThomas Funkhouser and Shi-Min Huen_US
dc.date.accessioned2015-06-05T07:06:40Z
dc.date.available2015-06-05T07:06:40Z
dc.date.issued2014en_US
dc.identifier.isbn-en_US
dc.identifier.issn-en_US
dc.identifier.urihttp://dx.doi.org/10.2312/sgp20141380en_US
dc.description.abstractGeodesic Voronoi diagrams (GVDs) defined on triangle meshes with polyline generators are studied in this paper. We introduce a new concept, called local Voronoi diagram, or LVD, which is a weighted Euclidean Voronoi diagram on a mesh triangle. We show that when restricting on a mesh triangle, the GVD is a subset of the LVD, which can be computed by using the existing 2D techniques. Moreover, only two types of mesh faces can contain GVD edges. Guided by our theoretical findings, the geodesic Voronoi diagram with polyline generators can be built in O(nN logN) time and takes O(nN) space on an n-face mesh with m generators, where N = maxfm;ng.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleGeodesic Voronoi Diagrams with Polyline Generatorsen_US
dc.description.seriesinformationSymposium on Geometry Processing 2014 - Postersen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record