Show simple item record

dc.contributor.authorPang, Youxinen_US
dc.contributor.authorYuan, Mengkeen_US
dc.contributor.authorChang, Yuchunen_US
dc.contributor.authorYan, Dong-Mingen_US
dc.contributor.editorLee, Sung-Hee and Zollmann, Stefanie and Okabe, Makoto and Wünsche, Burkharden_US
dc.date.accessioned2021-10-14T10:05:46Z
dc.date.available2021-10-14T10:05:46Z
dc.date.issued2021
dc.identifier.isbn978-3-03868-162-5
dc.identifier.urihttps://doi.org/10.2312/pg.20211393
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/pg20211393
dc.description.abstractWe present a GAN-based network architecture for low-light image enhancement, called Structure and Detail Aware Low-light Image Enhancement GAN (SDALIE-GAN), which is trained with unpaired low/normal-light images. Specifically, complementary Structure Aware Generator (SAG) and Detail Aware Generator (DAG) are designed respectively to generate an enhanced low-light image. Besides, intermediate features from SAG and DAG are integrated through guided map supervised feature attention fusion module, and regularizes the generated samples with an appended intensity adjusting module. We demonstrate the advantages of the proposed approach by comparing it with state-of-the-art low-light image enhancement methods.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectComputational photography
dc.titleSDALIE-GAN: Structure and Detail Aware GAN for Low-light Image Enhancementen_US
dc.description.seriesinformationPacific Graphics Short Papers, Posters, and Work-in-Progress Papers
dc.description.sectionheadersWorks-In-Progress and Posters
dc.identifier.doi10.2312/pg.20211393
dc.identifier.pages69-70


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record