Show simple item record

dc.contributor.authorLiu, Jingyuanen_US
dc.contributor.authorZhou, Xurenen_US
dc.contributor.authorFu, Hongboen_US
dc.contributor.authorTai, Chiew-Lanen_US
dc.contributor.editorFu, Hongbo and Ghosh, Abhijeet and Kopf, Johannesen_US
dc.date.accessioned2018-10-07T14:31:44Z
dc.date.available2018-10-07T14:31:44Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-074-1
dc.identifier.urihttps://doi.org/10.2312/pg.20181289
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/pg20181289
dc.description.abstractWe present TAVE, a framework that allows novice users to add interesting visual effects by mimicking human actions in a given template video, in which pre-defined visual effects have already been associated with specific human actions. Our framework is mainly based on high-level features of human pose extracted from video frames, and uses low-level image features as the auxiliary information. We encode an action into a set of code sequences representing joint motion directions and use a finite state machine to recognize the action state of interest. The visual effects, possibly with occlusion masks, can be automatically transferred from the template video to a target video containing similar human actions.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleTAVE: Template-based Augmentation of Visual Effects to Human Actions in Videosen_US
dc.description.seriesinformationPacific Graphics Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/pg.20181289
dc.identifier.pages3-4


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record