Show simple item record

dc.contributor.authorZhao, Huien_US
dc.contributor.authorLei, Naen_US
dc.contributor.authorLi, Xuanen_US
dc.contributor.authorZeng, Pengen_US
dc.contributor.authorXu, Keen_US
dc.contributor.authorGu, Xianfengen_US
dc.contributor.editorJernej Barbic and Wen-Chieh Lin and Olga Sorkine-Hornungen_US
dc.date.accessioned2017-10-16T05:26:09Z
dc.date.available2017-10-16T05:26:09Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-051-2
dc.identifier.urihttp://dx.doi.org/10.2312/pg.20171319
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/pg20171319
dc.description.abstractThe problem of polycube construction or deformation is an essential problem in computer graphics. In this paper, we present a robust, simple, efficient and automatic algorithm to deform the meshes of arbitrary shapes into their polycube ones. We derive a clear relationship between a mesh and its corresponding polycube shape. Our algorithm is edge-preserved, and works on surface meshes with or without boundaries. Our algorithm outperforms previous ones in speed, robustness, efficiency. Our method is simple to implement. To demonstrate the robustness and effectiveness of our method, we apply it to hundreds of models of varying complexity and topology. We demonstrate that our method compares favorably to other state-of-the-art polycube deformation methods.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectMesh models
dc.subjectMesh geometry models
dc.titleRobust Edge-Preserved Surface Mesh Polycube Deformationen_US
dc.description.seriesinformationPacific Graphics Short Papers
dc.description.sectionheadersShort Papers
dc.identifier.doi10.2312/pg.20171319
dc.identifier.pages17-22


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record