dc.contributor.author | Bredius, Carlo | en_US |
dc.contributor.author | Tian, Zonglin | en_US |
dc.contributor.author | Telea, Alexandru | en_US |
dc.contributor.editor | Archambault, Daniel | en_US |
dc.contributor.editor | Nabney, Ian | en_US |
dc.contributor.editor | Peltonen, Jaakko | en_US |
dc.date.accessioned | 2022-06-02T09:48:25Z | |
dc.date.available | 2022-06-02T09:48:25Z | |
dc.date.issued | 2022 | |
dc.identifier.isbn | 978-3-03868-182-3 | |
dc.identifier.uri | https://doi.org/10.2312/mlvis.20221068 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/mlvis20221068 | |
dc.description.abstract | We present a method to visually assess the stability of deep learned projections. For this, we perturb the high-dimensional data by controlled sequences and visualize the resulting changes in the 2D projection. We apply our method to a recent deep learned projection framework on several training configurations (learned projections and real-world datasets). Our method, which is simple to implement, runs at interactive rates, sheds several novel insights on the stability of the explored method. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | CCS Concepts: Human-centered computing --> Information visualization; Visual analytics; Visualization systems and tools | |
dc.subject | Human centered computing | |
dc.subject | Information visualization | |
dc.subject | Visual analytics | |
dc.subject | Visualization systems and tools | |
dc.title | Visual Exploration of Neural Network Projection Stability | en_US |
dc.description.seriesinformation | Machine Learning Methods in Visualisation for Big Data | |
dc.description.sectionheaders | Papers | |
dc.identifier.doi | 10.2312/mlvis.20221068 | |
dc.identifier.pages | 1-5 | |
dc.identifier.pages | 5 pages | |