Show simple item record

dc.contributor.authorBredius, Carloen_US
dc.contributor.authorTian, Zonglinen_US
dc.contributor.authorTelea, Alexandruen_US
dc.contributor.editorArchambault, Danielen_US
dc.contributor.editorNabney, Ianen_US
dc.contributor.editorPeltonen, Jaakkoen_US
dc.date.accessioned2022-06-02T09:48:25Z
dc.date.available2022-06-02T09:48:25Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-182-3
dc.identifier.urihttps://doi.org/10.2312/mlvis.20221068
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/mlvis20221068
dc.description.abstractWe present a method to visually assess the stability of deep learned projections. For this, we perturb the high-dimensional data by controlled sequences and visualize the resulting changes in the 2D projection. We apply our method to a recent deep learned projection framework on several training configurations (learned projections and real-world datasets). Our method, which is simple to implement, runs at interactive rates, sheds several novel insights on the stability of the explored method.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing --> Information visualization; Visual analytics; Visualization systems and tools
dc.subjectHuman centered computing
dc.subjectInformation visualization
dc.subjectVisual analytics
dc.subjectVisualization systems and tools
dc.titleVisual Exploration of Neural Network Projection Stabilityen_US
dc.description.seriesinformationMachine Learning Methods in Visualisation for Big Data
dc.description.sectionheadersPapers
dc.identifier.doi10.2312/mlvis.20221068
dc.identifier.pages1-5
dc.identifier.pages5 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License