Show simple item record

dc.contributor.authorHamid, Sagaden_US
dc.contributor.authorDerstroff, Adrianen_US
dc.contributor.authorKlemm, Sörenen_US
dc.contributor.authorNgo, Quynh Quangen_US
dc.contributor.authorJiang, Xiaoyien_US
dc.contributor.authorLinsen, Larsen_US
dc.contributor.editorArchambault, Daniel and Nabney, Ian and Peltonen, Jaakkoen_US
dc.date.accessioned2019-06-02T18:23:44Z
dc.date.available2019-06-02T18:23:44Z
dc.date.issued2019
dc.identifier.isbn978-3-03868-089-5
dc.identifier.urihttps://doi.org/10.2312/mlvis.20191160
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/mlvis20191160
dc.description.abstractA good deep neural network design allows for efficient training and high accuracy. The training step requires a suitable choice of several hyper-parameters. Limited knowledge exists on how the hyper-parameters impact the training process, what is the interplay of multiple hyper-parameters, and what is the interrelation of hyper-parameters and network topology. In this paper, we present a structured analysis towards these goals by investigating an ensemble of training runs.We propose a visual ensemble analysis based on hyper-parameter space visualizations, performance visualizations, and visualizing correlations of topological structures. As a proof of concept, we apply our approach to deep convolutional neural networks.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleVisual Ensemble Analysis to Study the Influence of Hyper-parameters on Training Deep Neural Networksen_US
dc.description.seriesinformationMachine Learning Methods in Visualisation for Big Data
dc.description.sectionheadersPapers
dc.identifier.doi10.2312/mlvis.20191160
dc.identifier.pages19-23


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record