Show simple item record

dc.contributor.authorKönig, Larsen_US
dc.contributor.authorJung, Alisaen_US
dc.contributor.authorDachsbacher, Carstenen_US
dc.contributor.editorKlein, Reinhard and Rushmeier, Hollyen_US
dc.date.accessioned2020-08-23T17:39:15Z
dc.date.available2020-08-23T17:39:15Z
dc.date.issued2020
dc.identifier.isbn978-3-03868-108-3
dc.identifier.issn2309-5059
dc.identifier.urihttps://doi.org/10.2312/mam.20201139
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/mam20201139
dc.description.abstractModern photorealistic rendering simulates spectral behaviour of light. Since many assets are still created in different RGB color spaces, spectral upsampling of the RGB colors to a spectral representation is required to use them in a spectral renderer. Limiting the upsampled spectra to physically valid and natural, i.e. smooth, spectra results in a more realistic image, but decreases the size of the gamut of colors that can be recreated. In order to upsample wide gamut color spaces with colors outside the gamut of physically valid reflectance spectra, a previous approach added fluorescence to create accurate and physically valid representations. We extend this approach to increase the realism and accuarcy while considering memory and computation time.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.7 [Computer Graphics]
dc.subjectThree Dimensional Graphics and Realism
dc.subjectColor
dc.subjectshading
dc.subjectshadowing
dc.subjectand texture
dc.titleImproving Spectral Upsampling with Fluorescenceen_US
dc.description.seriesinformationWorkshop on Material Appearance Modeling
dc.description.sectionheadersAcquiring Accurate Input
dc.identifier.doi10.2312/mam.20201139
dc.identifier.pages9-12


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record