Show simple item record

dc.contributor.authorFuetterling, Valentinen_US
dc.contributor.authorLojewski, Carstenen_US
dc.contributor.authorPfreundt, Franz-Josefen_US
dc.contributor.editorIngo Wald and Jonathan Ragan-Kelleyen_US
dc.date.accessioned2015-07-06T15:26:40Z
dc.date.available2015-07-06T15:26:40Z
dc.date.issued2014en_US
dc.identifier.isbn978-3-905674-60-6en_US
dc.identifier.issn2079-8679en_US
dc.identifier.urihttp://dx.doi.org/10.2312/hpg.20141098en_US
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/hpg.20141098
dc.description.abstractWe present an efficient implementation of a Dwyer-style Delaunay triangulation algorithm that runs in O(N) expected time. An implicit quad-tree is constructed directly from the floating point bit patterns of the input points by sorting the corresponding Morton codes with a radix sorting procedure. This unique structure adapts elegantly to any (non-)uniform distribution of input points and increases the accuracy of the merging calculations by grouping floating point values with similar bit patterns. Our implementation allows for easy parallelization and we demonstrate a record construction speed of one Billion Delaunay triangles in just 8s on a many-core SMP machine.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectGeometric algorithmsen_US
dc.titleHigh-Performance Delaunay Triangulation for Many-Core Computersen_US
dc.description.seriesinformationEurographics/ ACM SIGGRAPH Symposium on High Performance Graphicsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record