Show simple item record

dc.contributor.authorJabbireddy, Susmijaen_US
dc.contributor.authorLi, Shuoen_US
dc.contributor.authorMeng, Xiaoxuen_US
dc.contributor.authorTerrill, Judith E.en_US
dc.contributor.authorVarshney, Amitabhen_US
dc.contributor.editorHoellt, Thomasen_US
dc.contributor.editorAigner, Wolfgangen_US
dc.contributor.editorWang, Beien_US
dc.date.accessioned2023-06-10T06:34:35Z
dc.date.available2023-06-10T06:34:35Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-219-6
dc.identifier.urihttps://doi.org/10.2312/evs.20231042
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evs20231042
dc.description.abstractMonte Carlo path tracing techniques create stunning visualizations of volumetric data. However, a large number of computationally expensive light paths are required for each sample to produce a smooth and noise-free image, trading performance for quality. High-quality interactive volume rendering is valuable in various fields, especially education, communication, and clinical diagnosis. To accelerate the rendering process, we combine learning-based denoising techniques with direct volumetric rendering. Our approach uses additional volumetric features that improve the performance of the denoiser in the post-processing stage. We show that our method significantly improves the quality of Monte Carlo volume-rendered images for various datasets through qualitative and quantitative evaluation. Our results show that we can achieve volume rendering quality comparable to the state-of-the-art at a significantly faster rate using only one sample path per pixel.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Ray tracing; Neural networks
dc.subjectComputing methodologies
dc.subjectRay tracing
dc.subjectNeural networks
dc.titleAccelerated Volume Rendering with Volume Guided Neural Denoisingen_US
dc.description.seriesinformationEuroVis 2023 - Short Papers
dc.description.sectionheaders3D
dc.identifier.doi10.2312/evs.20231042
dc.identifier.pages49-53
dc.identifier.pages5 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License