Show simple item record

dc.contributor.authorLouis-Alexandre, Judithen_US
dc.contributor.authorWaldner, Manuelaen_US
dc.contributor.editorHoellt, Thomasen_US
dc.contributor.editorAigner, Wolfgangen_US
dc.contributor.editorWang, Beien_US
dc.date.accessioned2023-06-10T06:34:30Z
dc.date.available2023-06-10T06:34:30Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-219-6
dc.identifier.urihttps://doi.org/10.2312/evs.20231034
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evs20231034
dc.description.abstractLanguage models are trained on large text corpora that often include stereotypes. This can lead to direct or indirect bias in downstream applications. In this work, we present a method for interactive visual exploration of indirect multiclass bias learned by contextual word embeddings. We introduce a new indirect bias quantification score and present two interactive visualizations to explore interactions between multiple non-sensitive concepts (such as sports, occupations, and beverages) and sensitive attributes (such as gender or year of birth) based on this score.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing -> Visual analytics; Computing methodologies -> Natural language processing
dc.subjectHuman centered computing
dc.subjectVisual analytics
dc.subjectComputing methodologies
dc.subjectNatural language processing
dc.titleVisual Exploration of Indirect Bias in Language Modelsen_US
dc.description.seriesinformationEuroVis 2023 - Short Papers
dc.description.sectionheadersVA and Perception
dc.identifier.doi10.2312/evs.20231034
dc.identifier.pages1-5
dc.identifier.pages5 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License