Show simple item record

dc.contributor.authorKim, Younghoonen_US
dc.contributor.authorThayer, Kyleen_US
dc.contributor.authorGorsky, Gabriella Silvaen_US
dc.contributor.authorHeer, Jeffreyen_US
dc.contributor.editorJohansson, Jimmy and Sadlo, Filip and Marai, G. Elisabetaen_US
dc.date.accessioned2019-06-02T18:14:25Z
dc.date.available2019-06-02T18:14:25Z
dc.date.issued2019
dc.identifier.isbn978-3-03868-090-1
dc.identifier.urihttps://doi.org/10.2312/evs.20191166
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evs20191166
dc.description.abstractColor names facilitate the identification and communication of colors, but may vary across languages. We contribute a set of human color name judgments across 14 common written languages and build probabilistic models that find different sets of nameable (salient) colors across languages. For example, we observe that unlike English and Chinese, Russian and Korean have more than one nameable blue color among fully-saturated RGB colors. In addition, we extend these probabilistic models to translate color terms from one language to another via a shared perceptual color space. We compare Korean-English translations from our model to those from online translation tools and find that our method better preserves perceptual similarity of the colors corresponding to the source and target terms. We conclude with implications for visualization and future research.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectHuman
dc.subjectcentered computing
dc.subjectVisualization design and evaluation methods
dc.subjectVisualization systems and tools
dc.titleColor Names Across Languages: Salient Colors and Term Translation in Multilingual Color Naming Modelsen_US
dc.description.seriesinformationEuroVis 2019 - Short Papers
dc.description.sectionheadersDesign and Evaluation
dc.identifier.doi10.2312/evs.20191166
dc.identifier.pages31-35


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record