Show simple item record

dc.contributor.authorWitschard, Danielen_US
dc.contributor.authorJusufi, Iliren_US
dc.contributor.authorKerren, Andreasen_US
dc.contributor.editorByška, Jan and Jänicke, Stefan and Schmidt, Johannaen_US
dc.date.accessioned2021-06-12T11:15:22Z
dc.date.available2021-06-12T11:15:22Z
dc.date.issued2021
dc.identifier.isbn978-3-03868-144-1
dc.identifier.urihttps://doi.org/10.2312/evp.20211067
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evp20211067
dc.description.abstractNatural language processing in combination with visualization can provide efficient ways to discover latent patterns of similarity which can be useful for exploring large sets of text documents. In this poster abstract, we describe the ongoing work on a visual analytics application, called SimBaTex, which is based on embedding technology, dynamic specification of similarity criteria, and a novel approach for similarity-based clustering. The goal of SimBaTex is to provide search-and-explore functionality to enable the user to identify items of interest in a large set of text documents by interactive assessment of both high-level similarity patterns and pairwise similarity of chosen texts.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectHuman centered computing
dc.subjectVisual analytics
dc.subjectInformation systems
dc.subjectContent analysis and feature selection
dc.titleSimBaTex: Similarity-based Text Explorationen_US
dc.description.seriesinformationEuroVis 2021 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/evp.20211067
dc.identifier.pages5-7


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record