Show simple item record

dc.contributor.authorSharma, Riteshen_US
dc.contributor.authorTomson, Aymeen_US
dc.contributor.authorLobato, Emilioen_US
dc.contributor.authorKallmann, Marceloen_US
dc.contributor.authorPadilla, Laceen_US
dc.contributor.editorByška, Jan and Jänicke, Stefanen_US
dc.date.accessioned2020-05-24T13:49:27Z
dc.date.available2020-05-24T13:49:27Z
dc.date.issued2020
dc.identifier.isbn978-3-03868-105-2
dc.identifier.urihttps://doi.org/10.2312/eurp.20201117
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurp20201117
dc.description.abstractThis work presents an approach for visualizing aggregate spatial risk data for natural hazards in a way which is not restricted by fixed geographical boundaries and is intended to improve multi-risk awareness in at-risk populations. First, spatial proximity is analyzed to organize occurrences in clusters and the convex hull of each cluster is created in order to define our visualization regions. Then, each region is assigned a risk factor value which is visualized by selecting a color scheme specific to the data variation. The application of this technique is demonstrated using the state of California as a region of interest.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/]
dc.subjectHuman centered computing
dc.subjectVisualization techniques
dc.titleData Driven Multi-Hazard Risk Visualizationen_US
dc.description.seriesinformationEuroVis 2020 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/eurp.20201117
dc.identifier.pages13-15


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License