Show simple item record

dc.contributor.authorKnittel, Johannesen_US
dc.contributor.authorKoch, Steffenen_US
dc.contributor.authorErtl, Thomasen_US
dc.contributor.editorMadeiras Pereira, João and Raidou, Renata Georgiaen_US
dc.date.accessioned2019-06-02T18:21:09Z
dc.date.available2019-06-02T18:21:09Z
dc.date.issued2019
dc.identifier.isbn978-3-03868-088-8
dc.identifier.urihttps://doi.org/10.2312/eurp.20191134
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurp20191134
dc.description.abstractThis work presents a new approach to visually summarize large micro-document collections such as tweets. We extract frequent patterns of phrases as shortened quotes to present analysts an overview of popular snippets and statements, enabling more specific insights into large text collections compared to keyword-based visualizations. In our hierarchical structure, each quote can be the starting point to extract more fine-grained patterns on a subset of sentences that match the parent pattern. We show that our approach is scalable by applying it to millions of tweets.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectHuman
dc.subjectcentered computing
dc.subjectVisual analytics
dc.subjectComputing methodologies
dc.subjectInformation extraction
dc.titleInteractive Hierarchical Quote Extraction for Content Insightsen_US
dc.description.seriesinformationEuroVis 2019 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/eurp.20191134
dc.identifier.pages13-15


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record