Show simple item record

dc.contributor.authorBors, Christianen_US
dc.contributor.authorGschwandtner, Theresiaen_US
dc.contributor.authorMiksch, Silviaen_US
dc.contributor.editorAnna Puig and Renata Raidouen_US
dc.date.accessioned2018-06-02T17:55:42Z
dc.date.available2018-06-02T17:55:42Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-065-9
dc.identifier.urihttp://dx.doi.org/10.2312/eurp.20181117
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurp20181117
dc.description.abstractWhile open data platforms are increasingly popular among end-users as well as data providers, there is a growing problem with inconsistent update frequencies and lack of quality in datasets. Efforts to monitor data quality are currently limited to checking meta-information and creating revisions to allow manual inspection of former datasets.We employ a Visual Analytics framework for generating and visualizing data provenance from data quality to facilitate data analysis and help users to understand the impact of updates on the data. Data quality metrics are utilized to quantify the development of data quality over time for open data projects. We combine quality metrics, data provenance, and data transformation information in an interactive exploration environment to expedite assessment and selection of appropriate open datasets.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectInformation systems
dc.subjectData cleaning
dc.subjectData analytics
dc.subjectHuman
dc.subjectcentered computing
dc.subjectVisual analytics
dc.titleVisually Exploring Data Provenance and Quality of Open Dataen_US
dc.description.seriesinformationEuroVis 2018 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/eurp.20181117
dc.identifier.pages9-11


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record