Show simple item record

dc.contributor.authorRöhlig, Martinen_US
dc.contributor.authorLuboschik, Martinen_US
dc.contributor.authorPrakasam, Ruby Kalaen_US
dc.contributor.authorStachs, Oliveren_US
dc.contributor.authorSchumann, Heidrunen_US
dc.contributor.editorAnna Puig Puig and Tobias Isenbergen_US
dc.date.accessioned2017-06-12T05:18:01Z
dc.date.available2017-06-12T05:18:01Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-044-4
dc.identifier.urihttp://dx.doi.org/10.2312/eurp.20171176
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurp20171176
dc.description.abstractOptical coherence tomography (OCT) enables noninvasive high-resolution imaging of the human retina and therefore, plays a fundamental role in detecting a wide range of ocular diseases. Yet, OCT data often vary in quality and show strong parameter dependencies. We propose a visual analysis approach to support users in understanding the influence of parameters on different aspects of the data. First, we outline the problem scope and derive requirements for a visual parameter analysis of OCT data. Second, we devise matched visual designs that disclose the impact of specific parameter values and the relationships between multiple parameter settings. With our systematic approach we aim at helping users in choosing suitable parameter settings and finding a balance between acquisition effort and data quality.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectHuman
dc.subjectcentered computing
dc.subjectVisualization
dc.subjectVisualization application domains
dc.subjectVisual analytics
dc.titleVisually Analyzing Parameter Influence on Optical Coherence Tomography Data in Ophthalmologyen_US
dc.description.seriesinformationEuroVis 2017 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/eurp.20171176
dc.identifier.pages89-91


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record