Show simple item record

dc.contributor.authorMatute, Joséen_US
dc.contributor.authorLinsen, Larsen_US
dc.contributor.editorAnna Puig Puig and Tobias Isenbergen_US
dc.date.accessioned2017-06-12T05:17:59Z
dc.date.available2017-06-12T05:17:59Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-044-4
dc.identifier.urihttp://dx.doi.org/10.2312/eurp.20171174
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurp20171174
dc.description.abstractInvestigating etiology of a disease depends on the combination of tacit medical knowledge and multivariate analysis on a wide array of collected data. Confounding variables may generate a bias when exploring disease determinants, thus, reducing the predictive capabilities of risk factors. Stratified analysis is widely used in epidemiological settings to reduce the effect of confounding factors. We propose a stratified visual analysis approach based on linear projections and interactions in a Star Coordinates Plot (SCP), where the segregation power of dimensions in multiple strata can be explored interactively. We apply our approach to gain insight into three epidemiological results using stratified analysis regarding the prevalence of sleep apnea within age and gender strata and the segregating power of well-defined epidemiological risk factors.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleVisual Stratification for Epidemiological Analysisen_US
dc.description.seriesinformationEuroVis 2017 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/eurp.20171174
dc.identifier.pages81-83


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record