Show simple item record

dc.contributor.authorAlcaide, Danielen_US
dc.contributor.authorAerts, Janen_US
dc.contributor.editorAnna Puig Puig and Tobias Isenbergen_US
dc.date.accessioned2017-06-12T05:17:57Z
dc.date.available2017-06-12T05:17:57Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-044-4
dc.identifier.urihttp://dx.doi.org/10.2312/eurp.20171169
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurp20171169
dc.description.abstractFinding useful patterns in datasets has attracted considerable interest in the field of visual analytics. One of the most common solutions is the identification and representation of clusters. In this work, we propose a visual analytics clustering methodology for guiding the user in the exploration and detection of clusters in a dataset. We thereby combine the homological algebra with a graphical representation of the clustered dataset as a network into one coherent framework. Our approach entails displaying the results of the heuristics to users, providing a setting from which to start the exploration and data analysis.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectH.3.3 [Information Search and Retrieval]
dc.subjectClustering
dc.titleDaaG: Visual Analytics Clustering Using Network Representationen_US
dc.description.seriesinformationEuroVis 2017 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/eurp.20171169
dc.identifier.pages61-63


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record